

Current Mode PWM Controller

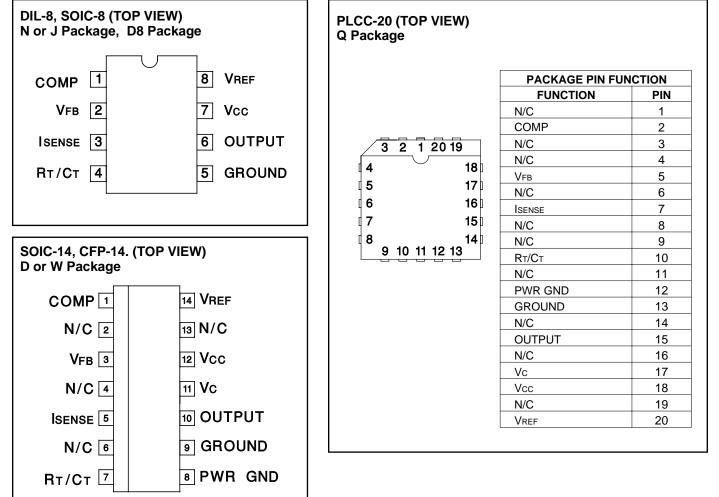
FEATURES

- Optimized For Off-line And DC
 To DC Converters
- Low Start Up Current (<1mA)
- Automatic Feed Forward Compensation
- Pulse-by-pulse Current Limiting
- Enhanced Load Response
 Characteristics
- Under-voltage Lockout With
 Hysteresis
- Double Pulse Suppression
- High Current Totem Pole
 Output
- Internally Trimmed Bandgap
 Reference
- 500khz Operation
- Low Ro Error Amp

BLOCK DIAGRAM

DESCRIPTION

The UC1842/3/4/5 family of control ICs provides the necessary features to implement off-line or DC to DC fixed frequency current mode control schemes with a minimal external parts count. Internally implemented circuits include under-voltage lockout featuring start up current less than 1mA, a precision reference trimmed for accuracy at the error amp input, logic to insure latched operation, a PWM comparator which also provides current limit control, and a totem pole output stage designed to source or sink high peak current. The output stage, suitable for driving N Channel MOSFETs, is low in the off state.


Differences between members of this family are the under-voltage lockout thresholds and maximum duty cycle ranges. The UC1842 and UC1844 have UVLO thresholds of 16V (on) and 10V (off), ideally suited to off-line applications. The corresponding thresholds for the UC1843 and UC1845 are 8.4V and 7.6V. The UC1842 and UC1843 can operate to duty cycles approaching 100%. A range of zero to 50% is obtained by the UC1844 and UC1845 by the addition of an internal toggle flip flop which blanks the output off every other clock cycle.

SLUS223A - APRIL 1997 - REVISED MAY 2002

ABSOLUTE MAXIMUM RATINGS(Note 1)

Supply Voltage (Low Impedance Source)
Supply Voltage (Icc < 30mA) Self Limiting
Output Current
Output Energy (Capacitive Load) 5 µJ
Analog Inputs (Pins 2, 3)0.3V to +6.3V
Error Amp Output Sink Current
Power Dissipation at TA \leq 25°C (DIL–8) 1 W
Power Dissipation at TA \leq 25°C (SOIC-14)
Storage Temperature Range65°C to +150°C
Junction Temperature Range55°C to +150°C
Lead Temperature (soldering, 10 seconds)
Note 1: All voltages are with respect to Pin 5.
All currents are positive into the specified terminal.
Consult Packaging Section of Databook for thermal
limitations and considerations of packages.

CONNECTION DIAGRAMS

DISSIPATION RATING TABLE

Package	TA ≤ 25°C	Derating Factor	TA ≤ 70°C	TA ≤ 85°C	TA ≤ 125°C
	Power Rating	Above TA ≤ 25°C	Power Rating	Power Rating	Power Rating
W	700 mW	5.5 mW/°C	452 mW	370 mW	150 mW

UC1842/3/4/5 UC2842/3/4/5 UC3842/3/4/5

ELECTRICAL CHARACTERISTICS:

Unless otherwise stated, these specifications apply for -55°C \leq TA \leq 125°C for the UC184X; -40°C \leq TA \leq 85°C for the UC284X; 0°C \leq TA \leq 70°C for the 384X; Vcc = 15V (Note 5); RT = 10k; CT = 3.3nF, TA=TJ.

PARAMETER	TEST CONDITIONS	UC1842/3/4/5 UC2842/3/4/5			UC3842/3/4/5			UNITS
		MIN	ТҮР	MAX	MIN	ТҮР	MAX	1
Reference Section								
Output Voltage	TJ = 25°C, IO = 1mA	4.95	5.00	5.05	4.90	5.00	5.10	V
Line Regulation	$12 \le VIN \le 25V$		6	20		6	20	mV
Load Regulation	$1 \le I_0 \le 20 \text{mA}$		6	25		6	25	mV
Temp. Stability	(Note 2) (Note 7)		0.2	0.4		0.2	0.4	mV/°C
Total Output Variation	Line, Load, Temp. (Note 2)	4.9		5.1	4.82		5.18	V
Output Noise Voltage	$10Hz \le f \le 10kHz$, TJ = 25°C (Note2)		50			50		μV
Long Term Stability	TA = 125°C, 1000Hrs. (Note 2)		5	25		5	25	mV
Output Short Circuit		-30	-100	-180	-30	-100	-180	mA
Oscillator Section								1
Initial Accuracy	TJ = 25°C (Note 6)	47	52	57	47	52	57	kHz
Voltage Stability	$12 \leq Vcc \leq 25V$		0.2	1		0.2	1	%
Temp. Stability	TMIN \leq TA \leq TMAX (Note 2)		5			5		%
Amplitude	VPIN 4 peak to peak (Note 2)		1.7			1.7		V
Error Amp Section								
Input Voltage	VPIN 1 = 2.5V	2.45	2.50	2.55	2.42	2.50	2.58	V
Input Bias Current			-0.3	-1		-0.3	-2	μA
Avol	$2 \le VO \le 4V$	65	90		65	90		dB
Unity Gain Bandwidth	(Note 2) TJ = 25°C	0.7	1		0.7	1		MHz
PSRR	$12 \leq Vcc \leq 25V$	60	70		60	70		dB
Output Sink Current	VPIN 2 = 2.7V, VPIN 1 = 1.1V	2	6		2	6		mA
Output Source Current	VPIN 2 = 2.3V, VPIN 1 = 5V	-0.5	-0.8		-0.5	-0.8		mA
Vout High	VPIN 2 = $2.3V$, RL = $15k$ to ground	5	6		5	6		V
Vout Low	VPIN 2 = 2.7V, RL = 15k to Pin 8		0.7	1.1		0.7	1.1	V
Current Sense Section								
Gain	(Notes 3 and 4)	2.85	3	3.15	2.85	3	3.15	V/V
Maximum Input Signal	VPIN 1 = 5V (Note 3)	0.9	1	1.1	0.9	1	1.1	V
PSRR	$12 \le V_{CC} \le 25V$ (Note 3) (Note 2)		70			70		dB
Input Bias Current			-2	-10		-2	-10	μA
Delay to Output	VPIN 3 = 0 to 2V (Note 2)		150	300		150	300	ns

Note 2: These parameters, although guaranteed, are not 100% tested in production.

Note 3: Parameter measured at trip point of latch with $V_{PIN 2} = 0$. Gain defined as

Note 4:

$$A = \frac{\Delta VPIN \ 1}{\Delta VPIN \ 3}, \ 0 \le VPIN \ 3 \le 0.8V$$

Adjust Vcc above the start threshold before setting at 15V.

Note 5: Output frequency equals oscillator frequency for the UC1842 and UC1843. Note 6:

Output frequency is one half oscillator frequency for the UC1844 and UC1845.

Note 7:

Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:

$$Temp \ Stability = \frac{V_{REF} \ (max) - VREF \ (min)}{Temp}$$

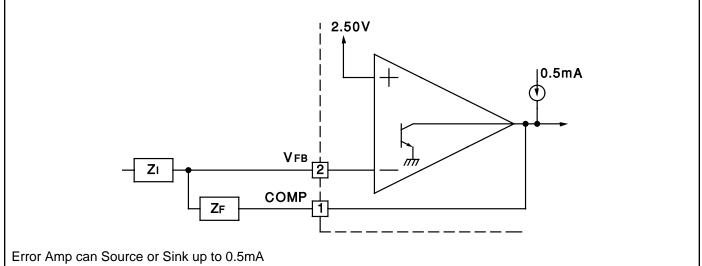
TJ(max) - TJ(min)

VREF (max) and VREF (min) are the maximum and minimum reference voltages measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the extremes in temperature.

UC1842/3/4/5 UC2842/3/4/5 UC3842/3/4/5

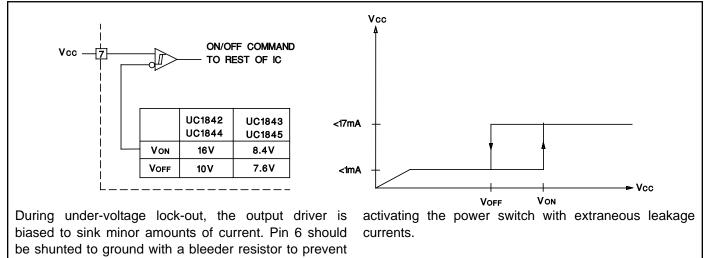
ELECTRICAL CHARACTERISTICS:

Unless otherwise stated, these specifications apply for $-55^{\circ}C \le TA \le 125^{\circ}C$ for the UC184X; $-40^{\circ}C \le TA \le 85^{\circ}C$ for the UC284X; $0^{\circ}C \le TA \le 70^{\circ}C$ for the 384X; Vcc = 15V (Note 5); RT = 10k; CT = 3.3nF, TA=TJ.

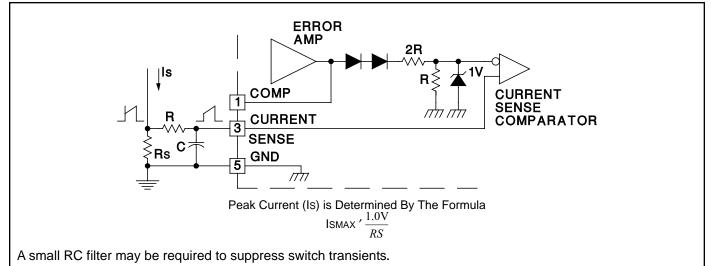

PARAMETER	TEST CONDITION	UC1842/3/4/5 UC2842/3/4/5			UC3842/3/4/5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX]
Output Section	· · ·							
Output Low Level	Isinк = 20mA		0.1	0.4		0.1	0.4	V
	ISINK = 200mA		1.5	2.2		1.5	2.2	V
Output High Level	ISOURCE = 20mA	13	13.5		13	13.5		V
	ISOURCE = 200mA	12	13.5		12	13.5		V
Rise Time	TJ = 25°C, CL = 1nF (Note 2)		50	150		50	150	ns
Fall Time	TJ = 25°C, CL = 1nF (Note 2)		50	150		50	150	ns
Under-voltage Lockout Sectio	n							
Start Threshold	X842/4	15	16	17	14.5	16	17.5	V
	X843/5	7.8	8.4	9.0	7.8	8.4	9.0	V
Min. Operating Voltage	X842/4	9	10	11	8.5	10	11.5	V
After Turn On	X843/5	7.0	7.6	8.2	7.0	7.6	8.2	V
PWM Section								
Maximum Duty Cycle	X842/3	95	97	100	95	97	100	%
	X844/5	46	48	50	47	48	50	%
Minimum Duty Cycle				0			0	%
Total Standby Current								
Start-Up Current			0.5	1		0.5	1	mA
Operating Supply Current	VPIN 2 = VPIN 3 = 0V		11	17		11	17	mA
Vcc Zener Voltage	Icc = 25mA	30	34		30	34		V

Note 4:	Gain defined as: $A = \frac{\Delta VPIN \ 1}{\Delta VPIN \ 3}; \ 0 \le VPIN \ 3 \le 0.8V.$
Note 5:	Adjust Vcc above the start threshold before setting at 15

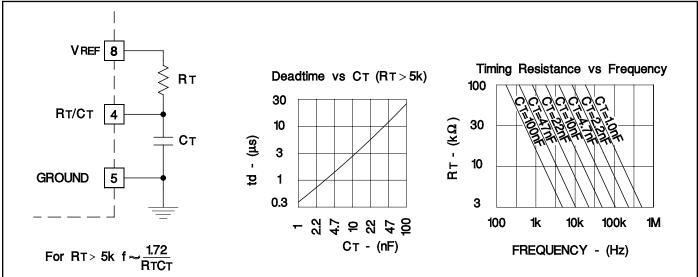
ίV. Output frequency equals oscillator frequency for the UC1842 and UC1843. Note 6:


Output frequency is one half oscillator frequency for the UC1844 and UC1845.

ERROR AMP CONFIGURATION



UC1842/3/4/5 UC2842/3/4/5 UC3842/3/4/5


UNDER-VOLTAGE LOCKOUT

CURRENT SENSE CIRCUIT

OSCILLATOR SECTION

0

-45

-90

-135

-180

10M

ø

1M

Phase

0

OUTPUT SATURATION CHARACTERISTICS

ERROR AMPLIFIER OPEN-LOOP FREQUENCY RESPONSE

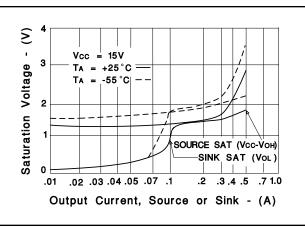
80

60

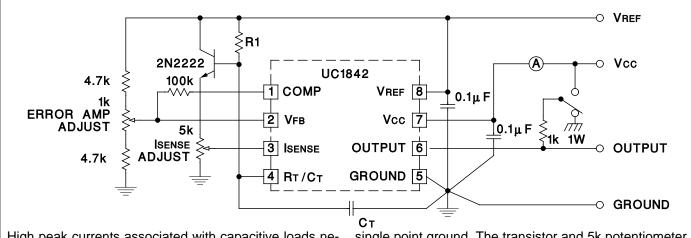
40

0

10


100

1k

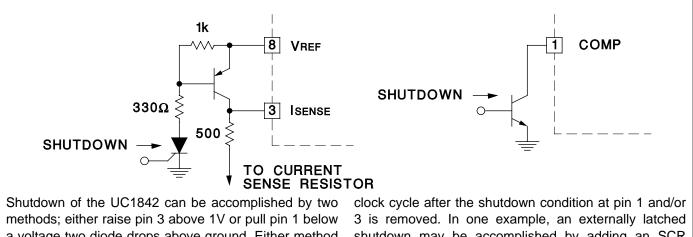

<u>8</u>

н Gain

Voltage 20

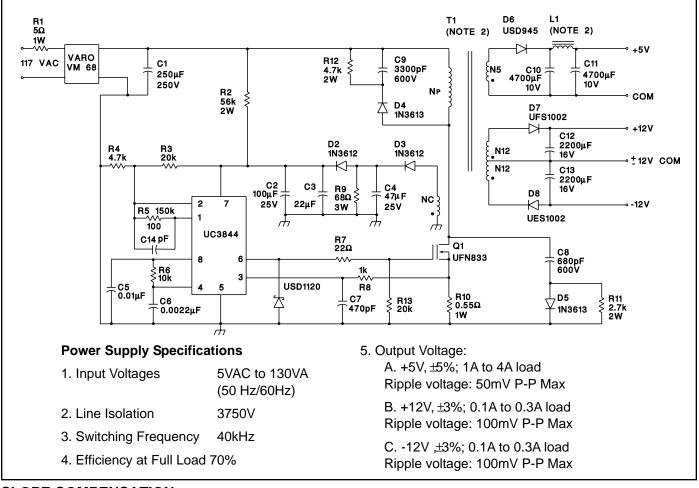
OPEN-LOOP LABORATORY FIXTURE

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

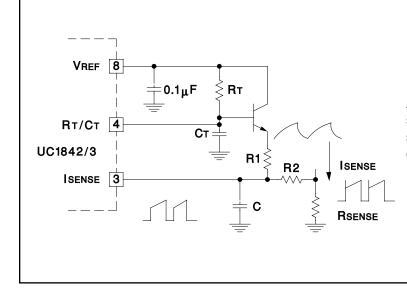

Αv

10k

Frequency - (Hz)


100k

SHUT DOWN TECHNIQUES



a voltage two diode drops above ground. Either method causes the output of the PWM comparator to be high (refer to block diagram). The PWM latch is reset dominant so that the output will remain low until the next shutdown may be accomplished by adding an SCR which will be reset by cycling VCC below the lower UVLO threshold. At this point the reference turns off, allowing the SCR to reset.

OFFLINE FLYBACK REGULATOR

SLOPE COMPENSATION

A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converters requiring duty cycles over 50%.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated